Microstructural Evolution of Materials Part 2: Defects and Diffusion

  • 0.0
5 Weeks
$ 49

Brief Introduction

Discover the principles of point defect evolution that explain materials science phenomena.

Description

This module is Part 2 of a four-part series on the Microstructural Evolution in Materials. Taken together, these four modules provide similar content to the MIT Course 3.022: Microstructural Evolution of Materials.

This series introduces various kinetic phenomena in various classes of materials. The course explains how materials develop different microstructure based on different processing techniques, and it relates these microstructures to the properties of the material.

Microstructural Evolution of Materials is intended for engineering and science students and professionals with an interest in materials statistics, kinetics, and microstructural transformations.

Part 1 of the course will introduce important concepts in statistical mechanics that are especially relevant to materials scientists. Topics include solid solutions, the canonical ensemble and heat capacity.

Part 2 of the course focuses on point defect evolution, including diffusion, substitutional diffusion, ionic defects, and ionic conductivity.

Part 3 of the course discusses surfaces and surface-driven reactions. Topics include surface energy, faceted and non-faceted growth, and growth and ripening.

Part 4 of the course focuses on phase transformations, including nucleation and growth, precipitate growth, interface stability, and glass transition.

Knowledge

  • At the end of this course, you will be able to:
  • Understand the microscopic mechanisms that govern diffusion
  • Explain how ion exchange can be used to chemically strengthen glass
  • Predict the charge carrier concentration in various charge compensation regimes using the Brouwer approximation

Keywords

$ 49
English
Available now
5 Weeks
Juejun Hu, Jessica Sandland
MITx
edX

Instructor

Share
Saved Course list
Cancel
Get Course Update
Computer Courses