Semiconductor Fundamentals

  • 0.0
6 Weeks
$ 750

Brief Introduction

From smartphones to satellites, semiconductors are everywhere. Tying together physics, chemistry, and electrical engineering, this easy-to-follow introduction provides the background needed to understand devices such as transistors and solar cells.

Description

This course provides the essential foundations required to understand the operation of semiconductor devices such as transistors, diodes, solar cells, light-emitting devices, and more. The material will primarily appeal to electrical engineering students whose interests are in applications of semiconductor devices in circuits and systems. The treatment is physical and intuitive, and not heavily mathematical.

Technology users will gain an understanding of the semiconductor physics that is the basis for devices. Semiconductor technology developers may find it a useful starting point for diving deeper into condensed matter physics, statistical mechanics, thermodynamics, and materials science. The course presents an electrical engineering perspective on semiconductors, but those in other fields may find it a useful introduction to the approach that has guided the development of semiconductor technology for the past 50+ years.

Students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software.
Completed exams will be scanned and sent using Gradescope for grading by Professor Lundstrom.

Semiconductor Fundamentals is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nano-Science and Technology. For further information and other courses offered and planned, please see the Nano-Science and Technology page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

Knowledge

  • Students will learn about the following specific topics:
  • energy bands
  • band gaps
  • effective masses
  • electrons and holes
  • basics of quantum mechanics
  • the Fermi function
  • the density-of-states
  • intrinsic carrier density
  • doping and carrier concentrations
  • carrier transport
  • generation-recombination
  • quasi-Fermi levels
  • the semiconductor equations
  • energy band diagrams
  • Among the important learning objectives, the course will introduce learners to the process of drawing and interpreting energy band diagrams. Energy band diagrams are a powerful, conceptual way to qualitatively understand the operation of semiconductor devices. In a concise way, they encapsulate most of the device-relevant specifics of semiconductor physics. Drawing and interpreting an energy band diagram is the first step in understanding the operation of a device.
  • This course material is typically covered in the first few weeks of an introductory semiconductor device course, but this class provides a fresh perspective informed by new understanding of electronics at the nanoscale.

Keywords

$ 750
English
Available now
6 Weeks
Mark S. Lundstrom
PurdueX
edX

Instructor

Share
Saved Course list
Cancel
Get Course Update
Computer Courses