A-level Mathematics for Year 13 - Course 2: General Motion, Moments and Equilibrium, The Normal Distribution, Vectors, Differentiation Methods, Integration Methods and Differential Equations
- 0.0
Brief Introduction
Develop your thinking skills, fluency and confidence to aim for an A* in A-level maths and prepare for undergraduate STEM degrees.
Description
This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level maths exams.
You will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study. These skills include:
- Fluency – selecting and applying correct methods to answer with speed and efficiency
- Confidence – critically assessing mathematical methods and investigating ways to apply them
- Problem solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions
- Constructing mathematical argument – using mathematical tools such as diagrams, graphs, logical deduction, mathematical symbols, mathematical language, construct mathematical argument and present precisely to others
- Deep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied
Over seven modules, covering general motion in a straight line and two dimensions, projectile motion, a model for friction, moments, equilibrium of rigid bodies, vectors, differentiation methods, integration methods and differential equations, your initial skillset will be extended to give a clear understanding of how background knowledge underpins the A -level course.
You’ll also be encouraged to consider how what you know fits into the wider mathematical world.
Knowledge
- By the end of this course, you'll be able to:
- Use calculus in kinematics for motion in a straight line
- Use differentiation and integration of a vector with respect to time for motion in two dimensions
- Solve projectile motion problems using both calculus/vector methods and constant acceleration formulae
- Use a standard model for friction
- Calculate moments understanding what they mean and how they might be used
- Solve problems involving parallel and nonparallel coplanar forces
- Apply an understanding of moments to statics problems involving rigid bodies
- Use the Normal distribution as a model for continuous data
- Conduct a hypothesis test of the mean using a Normal distribution
- Use a Normal distribution as an approximation of a Binomial distribution
- Add vectors diagrammatically
- Perform the algebraic operations of vector addition and multiplication by scalars
- Apply vector calculations to problems in pure mathematics
- Use methods for differentiating a function of a function, differentiating a product and differentiating a quotient
- Differentiate trigonometric and inverse trigonometric functions
- Use implicit and parametric differentiation
- Identify integrals that can be dealt with “by sight”
- Use a substitution method to integrate a function
- Use partial fractions to integrate rational functions
- Use the method of integration by parts
- Use the method of separating the variable to solve differential equations
- find the family of solutions for a differential equation